Thioredoxin overexpression prevents NO-induced reduction of NO synthase activity in lung endothelial cells.
نویسندگان
چکیده
We recently reported that nitric oxide (NO) induces posttranscriptional modulation of lung endothelial cell NO synthase (ecNOS) that results in loss of activity. The loss of activity can be reversed by the redox regulatory proteins thioredoxin (Thx)/thioredoxin reductase (Thx-R). The present study was designed to examine whether diminished expression of endogenous Thx and Thx-R may account for regulation of ecNOS activity in NO-exposed cells and whether overexpression of Thx can prevent NO-induced reduction of ecNOS activity in cultured porcine pulmonary artery endothelial cells (PAEC). Exposure to 8.5 ppm NO gas for 24 h resulted in an 80% decrease of Thx and a 27% decrease of Thx-R mRNA expression. Similarly, NO exposure caused 30 and 50% reductions in Thx and Thx-R protein mass, respectively. This NO-induced decrease in the expression of Thx-R mRNA and protein was accompanied by a significant ( P < 0.05) decrease in the catalytic activity of Thx-R but not of glutaredoxin or the cellular levels of reduced glutathione and oxidized glutathione. Overexpression of Thx gene in PAEC was achieved by transient transfection of these cells with pcDNA 3.1 vector inserted in sense or antisense (native) orientation in a human Thx cDNA. Thx mRNA and protein contents in transfected cells were four- and threefold higher, respectively, than those in native PAEC. Exposure of native cells to 10 μM NO solution for 30 min resulted in a significant ( P < 0.01) loss of ecNOS activity, whereas ecNOS activity was comparable in Thx-overexpressed cells with or without NO exposure. These results demonstrate that NO exposure results in diminished expression of Thx and Thx-R in PAEC. Endogenous levels of Thx are critical to restoring the NO-induced loss of ecNOS activity because overexpression of Thx prevented the NO-induced loss of ecNOS catalytic activity. These results also demonstrate that NO modulation of ecNOS and Thx proteins is regulated by a physiologically relevant redox mechanism.
منابع مشابه
Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملEXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملAntioxidant effects of statins via S-nitrosylation and activation of thioredoxin in endothelial cells: a novel vasculoprotective function of statins.
BACKGROUND HMG-CoA reductase inhibitors (statins) are lipid-lowering drugs that also exert pleiotropic vasculoprotective effects via activation of the endothelial NO synthesis. NO induces S-nitrosylation of target proteins. S-Nitrosylation of the antioxidant enzyme thioredoxin was recently shown to enhance its activity, thereby reducing intracellular reactive oxygen species. Therefore, we inves...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملAldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells
Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 275 2 Pt 1 شماره
صفحات -
تاریخ انتشار 1998